
 

Racecar Damping 4 – Applying State Space analysis to the Race car – PART 2 
 
In our last instalment of race car damping we introduced and discussed the concept of using state 
space analysis in choosing damping for the race car. We discussed how to formulate the state space 
matrix, how it compared to the ¼ car approximation and we played with the ¼ car model to see how 
things compared. 
 
In this instalment we will be taking what we learnt in part 1 and applying it to a bicycle model of a 
current spec F3 car. Were considering the case of the bicycle model of the F3 car so we can see the 
effects that aerodynamics has on the dynamics of the race car. It’s also a very effective way of 
introducing inerters as well. The F3 car is a very interesting case because it marks the crossover 
where aerodynamics has a significant impact on vehicle performance. Consequently for our 
discussion it is perfect. 
 
So that we are crystal clear let us outline the parameters of our F3 car. This is summarised in Table 
1 
 

Table – 1 – Parameters for an F3 car. 
 

Parameter Symbol Value Unit 
Total mass Mt 550 Kg 
Total unsprung mass at the front Mtf 20 Kg 
Total unsprung mass at the rear Mtr 30 Kg 
Front spring rate Kf 120000 N/m 
Front Damper rate Cf 12000/5000 N/m/s 
Front tyre spring rate Ktf 240000 N/m 
Rear spring rate Kr 100000 N/m 
Rear Damper rate Cr 12000/5000 N/m/s 
Rear tyre spring rate Ktr 260000 N/m 
Wheelbase Wb 2.7 M 
Front weight distribution Wdf 41%  
Distance from front axle to c.g a 1.593 m 
Distance from rear axle to c.g b 1.107 m 
Approximate CLA  2.5  
 
 
To further clarify our discussion we are considering a twin spring car front and rear, and I have just 
quoted the rates at the corner. In reality in the bicycle model I’m doubling these numbers, but for 
clarity I’ve quoted at corner values. These numbers are also in wheel rates. 
 
To save ourselves a bit of time I’m going to quote the linearised state space matrix. This is 
summarised in equation (1), 
 
 



 

(1) 
 
The reader should recognise equation (1) from my articles on how to analyse aeromaps that was 
published about 2 years ago. I leave the derivation of equation (1) to the reader ( In reality it 
actually isn’t that hard, it’s just an extension of what we did in part 1).  
 
However one area I do want to go over in a little detail is the derivation of the aero derivatives. The 
reader will recall I laid out the definition of the aero derivatives. I will recap these in equation (2), 
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At the time I mentioned you had to convert aeromaps from functions of front and rear ride height to 
functions of heave (z) and pitch angle (θ). Well in the process of researching this article I found a 
shortcut, and I’m kicking myself I didn’t think of it 2 years ago. 
 
The shortcut uses the chain rule of differentiation of several variables. The ace in the hole is the 
following, 
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So what we need to do is to construct partial derivatives of front and rear ride height as functions of 
heave and pitch angle. Using the chain rule of several variables it can be shown, 
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The power of equation (4) is that we can use our existing aeromaps to readily construct our aero 
derivatives. That’s pretty cool and I leave the derivation of equation (4) to the interested reader. 
 
Armed with this knowledge I constructed state space matricies for the high speed damping case. 
This included the case without and with downforce. The results were very interesting. The non 
downforce results are shown in Table –2. For brevity I have rolled in the complex conjugate pairs, 
 

Table – 2 Eigenvalues and eigenvectors for the non downforce case. 
 
Mode 1 2 3 4 5 6 
Eigenvalue -503.7 -302.7 -55.3 -15.5+46i -35.1 -11+26i 
Eigenvectors       
Z’ 0.04 -0.08 -0.46 0.09-0.09i -0.01 0.829 
Z 0 0 0.01 0 0 -0.01-0.027i 
θ’ -0.07 -0.065 -0.09 -0.45+0.36i -0.85 0.21-0.06i 
θ 0 0 0 0.01+0.01i 0.02 0 
ztf

’ -0.99 0.1527 0.44 0.721 -0.38 0.14+0.18i 
ztf

’ 0 0 -0.01 0 0.01 0 
ztr

’ 0.06 0.98 0.76 -0.36 – 0.05i 0.35 0.32+0.33i 
ztr

’ 0 0 -0.01 0 -0.01 -0.01i 
 
As we can see there are six primary modes. Modes 1 and 2 act primarily on the velocities of the 
unsprung mass. These die off very quickly which is a good thing. Modes 3 and 4 have very similar 
frequencies (approximately 55.3 rad/s) and are combined modes that effect heave, pitch angle and 
the unsprung mass. Modes 5 and 6 dominate the time response and have frequencies approximately 
35 rad/s, and act primarily on the sprung mass modes of heave and pitch. The first thing to point out 
is we have taken up where we left off with our ¼ car example from part 1. We saw very similar 
trends, but now we have added more detail. 
 
The downforce results are presented in Table 3. The eigenvectors didn’t change that much. 
However the eigenvalues did and the results are shown in Table 3 
 



 

Table – 3 Eigenvalues for the downforce case @ 200 km/h. 
 
Mode 1 2 3 4 5 6 
Eigenvalue -503.7 -302.7 -55.6 -16.9+44i -32.4 -10.8+27.2i 
Eigenvectors       
Z’ -0.04 -0.08 -0.46 0.075-0.09i 0.03 0.827 
Z 0 0 0.01 0 0 -0.01-0.027i 
θ’ 0.07 -0.065 -0.09 -0.44+0.38i -0.91 0.19-0.06i 
θ 0 0 0 0.01+0.01i 0.03 0 
ztf

’ 0.99 0.1527 0.44 0.712 -0.30 0.15+0.19i 
ztf

’ 0 0 -0.01 0 0.01 0 
ztr

’ -0.06 0.98 0.76 -0.36 – 0.05i 0.285 0.33+0.32i 
ztr

’ 0 0 -0.01 0 -0.01 -0.01i 
 
 
Apart from the eigenvector for mode 1 the rest of them are very similar to the non downforce case. 
The reader will note that mode 1 is inversed to what it was in Table 2. However the magnitudes are 
almost identical. This means this mode is still acting primarily on the same way, which is primarily 
on the front unsprung mass, it’s just acting in the opposite way. However this is all a bit academic 
as this mode dies off very fast.  
 
In terms of the eigenvalues as we can see modes 1 – 3 didn’t change that much. Mode 4 became a 
bit more damped, the frequency of mode 6 dropped a bit but mode 5 dropped by nearly 3 rad/s. 
What this indicates is that when ever a mode drops a natural frequency it indicates the system has 
been destabilised. This is exactly what we would expect a ride height sensitive aero car to do. Albeit 
in this case while this is something we have to deal with, it’s certainly not something you’d be using 
sleep over. 
 
However what Tables 2 and 3 tell us some general trends, that the more aero sensitive a car is the 
more you have to stabilise it. This situation is illustrated in this pole zero diagram as illustrated in 
Fig 1. 
 



 

 
Fig-1 – Pole zero diagram as more downforce is applied. 

 
As you can see the more downforce that is applied the less stable the more dominant mode is. This 
is the reason sports prototypes can’t be run below a minimum ride height. They experience 
something called proposing where the chassis rocks back and forth, and this is the extreme case 
illustrated in Fig 1. 
 
At this point you might be thinking this is rather entertaining but so what? Remember the 
eigenvalues returned by the state space give you the natural frequency and damping ratio. For the 
reader’s convenience let me remind you of the formulation, 
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Remember what I said about the ¼ car model. When it comes to aero and inerters it runs out of 
steam. Yet using the bicycle model, we have captured exactly what is going and we can see what it 
is up to. Once we know the effects the aero is having on the car for a given setup, then we can 
change the spring and damper settings to deal with it. This is where equation (5) is such a powerful 
tool because we can nail this down with far greater clarity then what we could do with the ¼ car 
approximation. 



 

 
The next real powerful application of state space techniques is considering the effect of inerters. 
Some of you may recall an article I did about a year and a half ago where I used state space analysis 
to analyse and play the devils advocate on inerters. I have no desire to repeat word for word what I 
said in that article, but to help us with inerters I used the concept of an inertance matrix. The 
formulation was, 
 

( ) xAinertIx ⋅= −1_&       (6) 
 
Here A was the typical state space equation as outlined in equation (1), and by choosing values of 
inerters we could construct the inertance matrix. Once we have equation (6) we can solve for the 
eigenvalues and eigenvectors and away we go. This is something we simply couldn’t have done 
with the ¼ car approximation. 
 
With all of this fancy mathematical footwork I have presented the next question that has to be asked 
is where does this all fit in. To that end I have the following guide on what to do to specify dampers 
for the race car. 

• Start by using the ¼ car approximation technique we discussed in Part 2 of this series. Use 
the damper guide but just remember you can go a bit over. Remember the powerful thing 
about this is it is a quick hand calculation, which you can readily put into a setup sheet. 

• Once you have you start points as specified by the ¼ car approximation, then you can move 
on to state space analysis. If you need something quick and dirty use the quarter car. If you 
need to incorporate aero and inerters, use the bicycle model, and if you need to incorporate 
roll use the full beam pogo stick model. Remember don’t be a hero, use Matlab, maple etc to 
do the eigenvalue, eigenvector stuff for you. 

• Once you have refined your choices use simulation software like ChassisSim extensively to 
test the results. This is the major reason I used a transient simulation engine for ChassisSim 
so make good use of it. 

• Finally always validate at the track. 
 
Remember treat this as a guide and not as something in the same league as the Ten Commandments. 
Last time I looked I didn’t have a direct line to any religious deity. However if you go through this 
process I guarantee it will get you pretty close.  
 
In closing then the subject of race car damping is incredibly vast and complex and this article is 
certainly not the last word on the subject. I can tell you right now anybody who thinks they now it 
all on race car damping should be shot on site for their own safety. However I trust what I have 
presented here with the use of the ¼ car approximation and the use of eigenvalues and eigenvectors 
provides a path through the forest. If that is all I have done then I have succeeded. 
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